

Fig. 1. ORTEP (Johnson, 1965) drawing at 50% probability of endo,endo-2,3-diphenylbornane-2,3-ozonide showing the adopted labeling. The labels for the phenyl carbons have been omitted for clarity and are assigned C21-C26 on C2 and C32-C36 on C3.

NBEPXP10) in which the ozonide ring is part of a more complex fused-ring system and their range of structural parameters includes those of the title structure [cf. average C—O(—C) = 1.420 (9), C—O(—O) = 1.448 (22) and O—O = 1.475 Å in the CSD files and 1.419, 1.454 and 1.467 Å for those parameters in the title structure; bond angles are more variable in the literature but the ranges include our values]. Far less common are those structural determinations in which the ozonide ring is 'strain-free', *i.e.* not part of

a larger fused system (Groth, 1970; Schaap, Siddiqui, Prasad, Rahman & Oliver, 1984). Hitchcock & Beheshti (1979) have discussed O—O bond lengths according to ring size. Asymmetry parameters (ΔC_s and ΔC_2) are described by Ladd & Palmer (1985).

References

- Cambridge Structural Database (1989). Cambridge Crystallographic Data Centre, Cambridge, England.
- GROTH, P. (1970). Acta Chem. Scand. 24, 2137-2148.
- HITCHCOCK, P. B. & BEHESHTI, I. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 126–129.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- LADD, M. F. C. & PALMER, R. A. (1985). Structure Determination by X-ray Crystallography. New York: Plenum.
- PALOMINO, E. (1986). PhD thesis, Wayne State Univ., USA.
- PALOMINO, E., SCHAAP, A. P. & HEEG, M. J. (1989). Tetrahedron Lett. 30, 6801-6804.
- PALOMINO, E., SCHAAP, A. P., RAHMAN, A. F. M. M. & HEEG, M. J. (1990). Acta Cryst. C46, 1940–1942.
- SCHAAP, A. P., SIDDIQUI, S., PRASAD, G., PALOMINO, E. & LOPEZ, L. J. (1984). J. Photochem. 25, 167–181.
- SCHAAP, A. P., SIDDIQUI, S., PRASAD, G., RAHMAN, A. F. M. M. & OLIVER, J. P. (1984). J. Am. Chem. Soc. 106, 6087–6088.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1990). C46, 1944-1946

8-(N-Methyl-N-p-tolylsulfonylamino)bicyclo[4.2.0]octan-7-one

BY B. TINANT AND J.-P. DECLERCQ

Laboratoire de chimie physique et de cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

and B. Gobeaux

Laboratoire de chimie organique de synthèse, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 29 January 1990; accepted 19 March 1990)

Abstract. $C_{16}H_{21}NO_3S$, $M_r = 307.41$, triclinic, $P\overline{1}$, a = 6.473 (6), b = 16.012 (6), c = 15.791 (6) Å, $\alpha = 106.22$ (3), $\beta = 92.83$ (6), $\gamma = 91.22$ (6)°, V = 1569 (2) Å³, Z = 4, $D_x = 1.30$ g cm⁻³, Mo K α , $\lambda = 0.71069$ Å, $\mu = 2.17$ cm⁻¹, F(000) = 656, T = 291 K, R = 0.053 for 2956 observed reflections. The two independent molecules in the asymmetric unit have similar geometry. The configuration of the substituent at C8 is *exo*. The puckering of the cyclobutanone ring as indicated by the dihedral angle

about the C1—C7 diagonal is 31 (1)° in molecule A and 29 (1)° in molecule B.

Experimental. The title compound results from a (2+2) cycloaddition of a keteniminium salt to cyclohexene. Because stereochemical assignments in fourmembered ring systems based on ¹H NMR coupling constants are ambiguous, an X-ray analysis was undertaken in order to assess the configuration at C8. Crystals obtained by evaporation from cyclo-

0108-2701/90/101944-03\$03.00

© 1990 International Union of Crystallography

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic temperature factors $(Å^2)$

Table 2. Bond lengths (Å) and angles (°)

	isotropic temperature factors (A ⁺)					A	В
	P	$(8 - \frac{2}{3}) \sum \sum I = a + a + a$			C2-C1	1.528 (5)	1.530 (5)
	D _{eq} –	$(0^{ij} 1^{ij}) \angle_i \angle_j \cup_{ij} u_i u_j$	a _i .a _j .		C6-C1	1.550 (5)	1.534 (5)
	x	v	Z	Bro	C8-C1	1.548 (6)	1.544 (6)
Malagula 4	~	,	-	- 64	C3—C2	1.511 (6)	1.488 (6)
Molecule A					C4—C3	1.510 (6)	1.516 (7)
CI	- 796 (6)	9291 (2)	1088 (3)	3.47 (8)	C5C4	1.528 (6)	1.533 (7)
C2	- 368 (6)	10273 (3)	1419 (3)	4.52 (9)	C6C5	1.539 (6)	1.529 (6)
C3	- 2118 (6)	10754 (3)	1919 (3)	4.71 (9)	C7—C6	1.512 (7)	1.514 (7)
C4	-4173 (6)	10499 (3)	1405 (3)	4.94 (10)	C8C7	1.515 (5)	1.516 (5)
CS	- 4700 (6)	9534 (3)	1268 (3)	5.11 (10)	O21-C7	1.199 (5)	1.197 (5)
C6	- 3039 (6)	8947 (2)	771 (3)	4.27 (9)	N9-C8	1.457 (5)	1.457 (5)
C7	- 2531 (6)	8201 (3)	1148 (3)	4.25 (9)	C10—N9	1.459 (5)	1.408 (5)
C8	- 822 (6)	8745 (2)	1758 (3)	3.49 (8)	S11N9	1-625 (3)	1.616 (4)
N9	1082 (5)	8368 (2)	1984 (2)	4.09 (7)	O12—S11	1.421 (3)	1.428 (3)
C10	1855 (6)	7626 (3)	1326 (3)	4.68 (9)	O13—S11	1.427 (3)	1.426 (3)
S11	1931 (2)	8568 (1)	3009 (1)	4.44 (2)	C14—S11	1.759 (5)	1.758 (5)
012	4109 (4)	8471 (2)	3002 (2)	6.05 (7)	C15C14	1.382 (6)	1-395 (6)
013	1097 (5)	9376 (2)	3467 (2)	5.57 (7)	C19-C14	1.388 (6)	1-381 (6)
C14	874 (6)	7750 (3)	3424 (3)	3.89 (9)	C16C15	1.379 (7)	1.380 (7)
C15	- 1062 (7)	7837 (3)	3764 (3)	4.69 (10)	C17—C16	1.389 (7)	1.379 (7)
C16	- 1870 (7)	7180 (3)	4071 (3)	5.00 (10)	C18—C17	1.369 (7)	1.378 (7)
C17	- 798 (8)	6429 (3)	4032 (3)	5.01 (10)	C20-C17	1-501 (8)	1.208 (8)
C18	1124 (8)	6364 (3)	3699 (3)	5.22 (11)	C19-C18	1.377 (7)	1.385 (7)
C19	1980 (7)	7010 (3)	3391 (3)	4.65 (9)			
C20	- 1724 (9)	5713 (3)	4351 (3)	1.27 (13)	C6C1C2	118-6 (3)	119-5 (3)
021	- 3010 (5)	7440 (2)	934 (2)	6.03 (/)	C8-C1-C2	119.7 (3)	119-0 (3)
M-11- D					C8-C1-C6	88.5 (3)	88.9 (3)
Molecule B					C3-C2-C1	113.0 (3)	113-2 (4)
CI	4627 (6)	4252 (2)	1104 (3)	3.71 (8)	C4C3C2	111-5 (3)	111.4 (4)
C2	4454 (7)	5239 (3)	1447 (3)	4.98 (10)	CSC4C3	110.5 (4)	111-2 (4)
C3	6435 (8)	5697 (3)	1859 (3)	5.77 (11)	C6-C5-C4	112-1 (4)	111.9 (4)
C4	8215 (7)	5410 (3)	1268 (4)	6.08 (12)	C5C6C1	113-4 (3)	114-2 (3)
C5	8586 (7)	4438 (3)	1119 (4)	6.36 (12)	C/C6C1	85.7 (3)	80.0 (3)
C6	6650 (6)	3874 (3)	720 (3)	4.38 (9)	C7-C6-C5	113-2 (4)	113-2 (4)
C7	6254 (6)	3148 (3)	1140 (3)	4.24 (9)	C8-C7-C6	91-1 (3)	90-7 (3)
C8	4827 (6)	3714 (3)	1775 (3)	3.82 (8)	021	133.9 (4)	133-8 (4)
N9	2962 (5)	3359 (2)	2046 (2)	4.33 (7)	021	133.6 (4)	134 / (4)
C10	1914 (6)	2596 (3)	1420 (3)	4.81 (9)	C/C8C1	85.6 (3)	80.1 (3)
S11	2482 (2)	3575 (1)	3078 (1)	4.69 (3)	N9-C8-C1	119.5 (3)	119.3 (3)
012	3496 (5)	4397 (2)	3502 (2)	5.85 (7)	Ny = C8 = C7	122.0 (3)	122.0 (3)
O13	297 (5)	3471 (2)	3113 (2)	6-12 (8)	C10-N9-C8	110.0 (3)	120.7 (2)
C14	3661 (7)	2776 (3)	3487 (3)	4.18 (9)		110.2 (2)	118.6 (3)
C15	2536 (7)	2016 (3)	3464 (3)	4.79 (10)		115-2 (3)	106.1 (2)
C16	3507 (8)	1379 (3)	3755 (3)	5.43 (11)	012-511-19	106-0 (2)	106.8 (2)
C17	5538 (8)	1485 (3)	4086 (3)	5.20 (11)	013-511-19	100.2 (2)	110.8 (2)
C18	6605 (7)	2246 (3)	4112 (3)	5-40 (11)	C14 S11 NO	120.4 (2)	106.0 (2)
C19	5698 (7)	2895 (3)	3815 (3)	4.80 (10)		107 4 (2)	108.5 (2)
C20	6558 (9)	774 (4)	4393 (4)	7.72 (14)	C14-S11-012	109.1 (2)	108.0 (2)
O21	6664 (4)	2395 (2)	953 (2)	5.91 (7)	CIS-CI4-SII	120.2 (3)	119.5 (3)
					C19-C14-S11	119.5 (3)	120.1 (3)
					C19-C14-C15	120.2 (4)	120 1 (3)
					C15-C14-C13	119.1 (4)	118.8 (4)
					C17-C16-C15	121.5 (4)	121.7 (5)
					C18-C17-C16	118-1 (5)	118.2 (5)
<i>የ</i> የ		Ŷ	Ŷ		C20-C17-C16	120.7 (5)	120.4 (5)
	0	- الم	-1 <u>cs</u>		C20-C17-C18	121-2 (5)	121.4 (5)

C19-C18-C17

C18-C19-C14

Fig. 1. Stereoscopic view of molecule A.

hexane. D_m not measured. Parallelepiped crystal with dimensions $0.40 \times 0.16 \times 0.06$ mm. Lattice parameters refined using 15 reflections in the range $5 \le 2\theta$ $\le 25^\circ$. Syntex $P2_1$ diffractometer, graphitemonochromated Mo K α radiation. 4643 $h \pm k \pm l$ independent reflections with $\sin \theta / \lambda \le 0.56$ Å⁻¹; $0 \le$ $h \le 7$, $-17 \le k \le 17$, $-17 \le l \le 17$, 2956 with $I \ge 2.5\sigma(I)$. Standard reflection (064) checked every 50 reflections; no significant deviation. Structure solved by *SHELXS*86 (Sheldrick, 1985). All H atoms in idealized positions (C—H = 1.08 Å, H—C—H = 109.5°). Anisotropic block-diagonal least-squares refinement (*SHELX*76, Sheldrick, 1976) using F; H isotropic with common refined temperature factor. $w = 1/(\sigma^2 + 0.00021F^2)$. R = 0.053, wR = 0.053 for 2956 observed reflections. Final maximum shift to e.s.d. = 0.02. S = 1.84. Maximum and minimum heights in final difference Fourier synthesis = 0.30 and -0.27 e Å⁻³. Atomic scattering factors from *International Tables for X-ray Crystallography* (1974).

121-9 (4) 119-2 (4) 121·9 (4) 118·9 (4) The atomic parameters are given in Table 1.* The bond lengths and angles are listed in Table 2. Fig. 1 is a stereoscopic view of the molecule, showing the numbering of the atoms (*PLUTO*, Motherwell & Clegg, 1978).

Related literature. There are only eight structures which contain the bicyclo[4.2.0]octan-7-one skeleton (Cambridge Structural Database, version 4.10: Allen *et al.*, 1979). From these, 8-[(2,2-dimethyl-3-oxo-cyclohexyl)hydroxymethyl]-1-methylbicyclo[4.2.0]-octan-7-one (Fair, Clark & Nikaido, 1985) is the only structure with monosubstitution at C8; in this

molecule the puckering of the cyclobutanone ring is $26.1 (2)^{\circ}$.

References

- FAIR, C. K., CLARK, G. R. & NIKAIDO, M. M. (1985). Acta Cryst. C41, 155–157.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 175–189. Oxford Univ. Press.

Acta Cryst. (1990). C46, 1946–1947

Structure of 2,3-Dimethylquinoxaline

BY K. WOŹNIAK AND T. M. KRYGOWSKI

Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warszawa, Poland

AND B. KARIUKI AND W. JONES

Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, England

(Received 12 February 1990; accepted 2 April 1990)

Abstrast. $C_{10}H_{10}N_2$, $M_r = 158.20$, monoclinic, C2/c, a = 7.641 (2), b = 9.896 (1), c = 11.480 (1) Å, $\beta =$ 99.10 (1)°, V = 857.12 (25) Å³, Z = 4, $D_x =$ 1.226 g cm^{-3} , λ (Mo K α) = 0.71069 Å, $\mu =$ 0.699 cm^{-1} , F(000) = 336, T = 291 K, R = 0.0396 for 623 unique observed reflections. The structure consists of 2,3-dimethylquinoxaline molecules oriented about the twofold axes. The molecule is planar.

Experimental. Crystals of 2,3-dimethylquinoxaline (hereafter abbreviated DMQ) were crystallized from acetonitrile. An Enraf-Nonius CAD-4 diffractometer was used with graphite-monochromatized Mo Ka radiation. The crystal size was $0.20 \times 0.30 \times 0.35$ mm. Unit-cell parameters were obtained by least-squares fit of the setting angles of 25 reflections in the θ range $3 < 2\theta < 13^\circ$. The intensities of 4105 reflections were measured ($\sin \theta \le 30^\circ$, $-9 \le h \le 9$, $0 \le k \le 11$, $0 \le l < 13$, ω -2 θ scan mode). No significant variation (< 3%) was found in the intensities of the intensity control reflections $\overline{312}$, $\overline{222}$ and 110.

The data were corrected for Lorentz and polarization effects but no absorption correction was applied. 1654 reflections with $|F| \ge 3\sigma(F)$ were used in the calculations, $R_{int} = 0.040$. The structure was solved with multisolution direct methods (Sheldrick, 1986), and refined using full-matrix least-squares methods (Sheldrick, 1976), minimizing $\sum w(|F_o| - |F_c|)^2$, w = $6.8151/[\sigma^2(F) + 0.00007F^2]$. Heavy atoms were refined with anisotropic and H atoms with isotropic temperature factors; 76 parameters were varied. The refinement converged to R = 0.0396, wR = 0.0402. $(\Delta/\sigma)_{max} = 0.002$, $(\Delta/\sigma)_{mean} = 0.001$ and $(\Delta\rho)_{max}/(\Delta\rho)_{min} = +0.12/-0.12$ e Å⁻³. Fractional coordinates and equivalent isotropic temperature coefficients for non-H atoms are given in Table 1.* The

0108-2701/90/101946-02\$03.00

© 1990 International Union of Crystallography

1946

^{*} Lists of structure factors, anisotropic thermal parameters, bond lengths and angles, and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52873 (21 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

ALLEN, F. H., BELLARD, S., BRICE, M. D., CARTWRIGHT, B. A., DOUBLEDAY, A., HIGGS, J., HUMMELINK, T., HUMMELINK-PETERS, B. G., KENNARD, O., MOTHERWELL, W. D. S., ROD-GERS, J. R. & WATSON, D. G. (1979). Acta Cryst. B35, 2331– 2339.

^{*} Lists of atomic parameters for H atoms, anisotropic thermal parameters for non-H atoms and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52920 (7 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.